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Dear Reader,

The Covid-19 Pandemic keeps us in its chocke-hold with 
another lock-down of work and social life closely around the 
corner. We are all required to stay at home and practice social 
distancing. Therefore, I hope that this ORbit edition can cheer 
you up a bit with interesting articles on, e. g., how Operations 
Research can help also little businesses to fulfi l distance regu-
lations due to Covid-19 in an optimal way.

The Aarhus OR day 2020 was helt online permitting a lot of people to participate 
online which was a nice experience even though of course we all would have pre-
ferred to meet face-to-face. 

In this ORbit ediction, Monica Fischetti shows us how to deal with social distancing 
regulations due to Covid-19. Niels-Christian Fink Bagger, Evelien van der Hurk, 
David Pisinger look at the Pandemic from another angle providing decision support 
for policy makers regarding contact limitation measures. 

Getting a little bit away from our ”new reality” of social distancing, articles on how to 
model diversity of solutions by Linnea Ingmar or the DORS Price winning article of 
Peter Emil Tybirk on a primer on reinforcement learning for combinatorial optimiza-
tion should be able to help you. Moreover, we have an article on quayside planning 
of container terminals provided by Rasmus Riber as well as one that shows us how 
to win an international timetabling competition given by Dennis S. Holm, Rasmus Ø. 
Mikkelsen, and Thomas Stidsen. Last but not least, Daniele Gammelli shares with 
us his machine learning approach for shared mobility demand prediction. 

Please pay also attention to the call for the next DORS Price Winning Thesis and 
next year’s AOO! I wish you all a good reading! Julia Pahl (Editor)

God læsning

Julia Pahl, redaktør

Editor
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Nu är hösten, och snart till och med vintern, här. Förra gången jag 
förberedde min text för ORbit var COVID-pandemin i sin startfas, och 
då hoppades och trodde nog de fl esta av oss att livet skulle återgå till 
sin normala lunk framåt hösten. Att arbete, undervisning och konfe-
renser skulle vara tillbaka på ett någorlunda normalt sätt igen vid det 
här laget. Under sommaren och början på hösten började vi gradvis 
förstå att så inte skulle bli fallet, och vid det här laget vågar vi knappt 
ens hoppas på normalitet under första halvan av 2021.

 Många utmaningar kvarstår innan pandemin är över, men samtidigt 
har vi också lärt oss att leva med färre fysiska och fl er virtuella möten i arbete och vardag. 
Detta skifte har gett oss nya insikter och utmaningar - jag är nog inte den enda som optimi-
stiskt har bokat in sig på fl era lätt-tillgängliga virtuella konferenser utan att reservera tillräckligt 
med tid i kalendern för att faktiskt delta på ett bra sätt, eller varit helt utmattad efter dagar fyllda 
med virtuella möten.

 Arbetet i SOAF har givetvis också påverkats av pandemin. Redan innan pandemin hölls de 
fl esta styrelsemöten via telefon, och faktum är att dessa snarare har blivit mer fysiska nu 
eftersom vi har börjat använda video för det mesta. Styrelsen har under året arbetat med olika 
initiativ för att ge våra medlemmar ännu mer valuta för medlemsavgiften, och vi hoppas snart 
kunna dela mer information med er om detta. Vi har även tittat på hur vi ska ge kontinuitet till 
vårt uppskattade doktorandnätverk, och haft de första diskussionerna om nästa års konferens 
och årsmöte.

 Mattias Grönkvist, Ordförande, SOAF

Svenska operationsanalysföreningen
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By  Julia Pahl

Aarhus OR Day 2020

This year’s OR Aarhus Day 2020 took place online due to 
Covid-19 that holds the world under breath and at home since 
March 2020. 

This is the right time to be glad for the technological impro-
vements that took place in recent years with platforms 
from Zoom to MS Teams, just to mention a few, that allow 
the community to reach out to even more people as under 
normal circumstances. In the early minutes after starting off , 
40 people had already logged on the event peaking at ca. 60 
at some points in time.

The welcome speech to the OR Day 2020 was held by Ata 
Jalili Marand, the representative of the Cluster for Operations 
Research, Analytics, and Logistics (CORAL) at Aarhus Uni-
versity, and the welcome speech for DORS and some intro-
ductory words on this organization given by Dario Pacino, the 
president of DORS.

The fi rst talk was given by Mia Bredal, Senior Manager in Pro-
duct Development at Arla on Savings Through Supply Chain 
Optimization and Transformation. We got a lot of insights into 
how diff erent toolsets can help reducing complexity of works-
treams in various areas of an organization from procurement, 

production, logistics to marketing and trade investments. 
Besides, Mia showed her excellent talent of motivating 
people to participate in the talk via Kahoot. 

Jacob Roldsgaard Poulsen, Senior Manager, Global Demand 
Planning gave together with Aksel Poulstrup, Director, Sales 
and Operations Planning at Danish Crown the second talk of 
the day on Business transformation in Danish Crown Foods 
by implementing the Sales and Operations Planning Concept. 
It was interesting to learn how Danish Crown approaches 
sales and operations planning at such a great company. 

After the lunch break, Victor Bloch, Senior Consultant at 
INVERTO, a BCG Company, introduced the participants to 
how consulting is lived at the company with the talk on Con-
sulting: from acquisition to implementation. Victor presented 
concrete examples of the company’s consultancy projects 
and gave the audience an insight on how fast, as a consul-
tant, one needs to turn to an expert within a fi eld from kno-
wing nothing about it.

The last talk of the day before the time to zoom-network with 
the companies and the participants was given by Brian Bruhn 
Sørensen, Senior Group Process Consultant, SC Process 

Figure 1: Mia Bredal talking about Sustainable Supply Chain Optimi-
zation and Transformation

Figure 2: Jacob Roldsgaard Poulsen and Aksel Poulstrup Presenting 
Sales and Operations Planning performed at Danish Crown
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Excellence at Grundfos on Analytics in Sales, Inventory and 
Operations Planning. Brian explained the supply network 
planning at Grundfos with a focus on inventory management. 
His presentation was an excellent example of how operati-
ons management tools and techniques are implemented in a 
world-class company.

 

Afterwards, time was invested in zoom networking sessions 
for INVERTO and Grundfos. Unfortunately, only a few stu-
dents joined the sessions. 

Figure 3: by Brian Bruhn Sørensen talking about Analytics in Sales, 
Inventory, and Operations Planning at Grundfos

DORS’ fi rma- og institutmedlemmer

Institutmedlemmer

• Datalogisk Institut, Københavns Universitet 
• Institut for Virksomhedsledelse og Økonomi, 
Syddansk

  Universitet 
• Institut for Matematiske Fag, Aarhus Universitet 
• Afdeling for Anvendt Matematik og Statistik, IMF,
  Københavns Universitet 
• CORAL, Aarhus University 
• DTU Management, Danmarks Tekniske Univer-
sitet 

• Department of Materials and Production, Aalborg
  University 

Firmamedlemmer

• A.P. Møller – Mærsk
• Copenhagen Optimization
• DONG Naturgas A/S
• DSB S-tog
• Hermes Traffi  c Intelligence
• Københavns Lufthavne A/S
• MaCom A/S
• MOSEK
• Novo Nordisk (CMC Clinical Supplies)
• Optivation 
• PDC A/S
• PostNord
• QAMPO
• Rapidis
• Transvision A/S
• Trapeze Group Europe A/S

We are looking forward to the next Aarhus OR Days in 2021 
crossing our fi ngers that we will be able to meet, again, in 
person to discuss and learn about how OR is applied in vari-
ous companies and share some small talk face-to-face while 
maybe permitting some online-participation for those who are 
not able to be there in person. 
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By  Martina Fischetti

Mathematical Optimization for facility location 
under COVID-pandemic

Abstract: Moments of crisis are also opportunities to look at 
the world with new eyes. This is how we discovered an ana-
logy between the optimization challenge of locating turbines 
off shore and the one of locating facilities to ensure social 
distancing and safety during COVID-pandemic. This work 
shows an example of how Operations Research can help 
businesses and customers during this challenging period. 
In particular, we show that using mathematical optimization 
one can increase profi t for businesses (fi tting more tables in a 
restaurant, umbrellas on a beach, etc.) while also increasing 
safety for customers.

1 Introduction

The spread of viruses such as SARS-CoV-2 brought new 
challenges to our society, including a stronger focus on safety 
across all businesses. In particular, many countries have impo-
sed a minimum social distance between people in order to 
ensure their safety. This brings new challenges to many custo-
mer-related businesses (such as restaurants, offi  ces, etc.) 
on how to locate their facilities under distancing constraints. 
Can we then use Operations Research to help business-owners 
to serve more customers while satisfying social distance 
regulations? Or, in other words, can we fi nd facility layouts 
that maximize the usage of space within safety regulations?
This is a very relevant question for many businesses such as 
restaurants, pubs, etc. as more facilities (tables, seats etc.) 
translate in higher profi ts.

We also went a step forward asking ourselves: among lay-
outs with the same number of facilities that respect minimum 
distance constraints, are there layout confi gurations that are 
safer than others? Indeed, let us look at the toy example of 
Figure 1. This shows a regular layout for a restaurant: regu-
lar layouts are typical of manual solutions, as they repre-
sent a simple strategy to locate facilities within the safety 
distance regulations. All tables, indeed, are located accor-

ding to social distancing constraints... but does this actually 
mean that all tables are equivalent in terms of safety? If you 
would have to sit in such a restaurant, where would you sit?
Our previous experience on a diff erent yet similar problem (the 
wind farm layout problem) suggests that tables in the center 
are more risky as they are subject to virus spread from all 
directions. We therefore focus on the case of optimizing facility 

location to maximize safety. In this second case we have a fi xed 
number of customers that we can locate in the area, and the 
challenge is to minimize virus spread.An example of this appli-
cation could be a restaurant with a limited kitchen capacity and 
a big space available. Here the challenge is not anymore to fi t 
as many tables as possible, but to design the safer table layout.
To properly answer the above questions we used our expe-
rience in wind farm design, exploiting a parallel between the 
two situations.

Figure 1: A restaurant has placed all tables on a regular grid with a 
fi xed distance between tables to respect social distancing limitations. 
Is it equivalent, in terms of safety, to sit at any table?
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2 Optimal social distance and optimal wind 
farm layout: diff erent yet similar

In the last years we have been working on the off shore wind 
farm layout optimization problem, which consists in deciding 
where to place turbines in a given area in order to maximize 
production while reducing costs (refer for example to [1,2]). 

A key aspect in the optimization is to take wake eff ects into 
account. The wake eff ect is the interference phenomenon for 
which, if two turbines are located one close to another, the 
upwind turbine creates a shadow on the one behind. This is of 
great importance in the design of the layout since it results in a 
loss of power production for the turbines downstream, that are 
also subject to a strong (hence damaging) turbulence. Also, 
nearby wind farms might need to be considered in the optimi-
zation as they can also interfere with the new one. 

In practical applications, a minimum and/or maximum number 
of turbines to be located in the area can be imposed, together 
with a minimum distance between turbines (to avoid the 
blades clash, and also for turbulence considerations). There 
can be obstacles within the off shore area (such as natu-
ral reserves, preexisting infrastructures, bad seabed areas 
etc.), which are areas where the turbines cannot be located.
The wind farm layout optimization problem therefore con-
sists in locating a given number of turbines (or as many as 
profi table) in a given area, ensuring a minimum distance bet-
ween turbines and minimizing the interference between them.

What about our problem about social distancing in a 
public place such as a restaurant? It also consists in loca-
ting a given number of facilities (tables or customers) in a 
given area, ensuring a minimum distance between them 
(legal or recommended social distance) and minimizing the 
potential virus spread between facilities. Our experience 
on the wind farm layout problem shows that optimal lay-

outs tend to use the borders of the available area, where 
the turbines create less interference to other turbines. 
If we therefore look back at the initial question of Figure 1, the 
tables on the borders are to be preferred, as they suff er from 

Figure 2: Wake eff ect on a real wind farm (Horns Rev 1): regular 
layouts like the one in the picture can be very ineffi  cient for certain 
specifi c wind scenarios, resulting into a greatly reduced energy pro-
duction for the whole wind farm.  [Source: Vattenfall]

virus spread coming from fewer directions. At the same time, 
a smarter location of tables would have placed more tables 
on the borders, as we will also see in our tests of Section  3.
Our results for the wind farm layout problem also show that 
traditional manual layouts where turbines were placed on a 
regular grid are highly sub-optimal as signifi cantly higher pro-
duction can be achieved by a less-regular but smarter (i.e., 
optimized) placement of turbines. The resolution of the pro-
blem in practical applications is far from trivial, and state-of-
the-art mathematical optimization techniques have proved to 
make a huge impact in the practical resolution of the problem, 
resulting in savings in the order of hundred million Euros [2].

We used our previous work and expertise in wind farm design  
[1] to write a mathematical formulation of the facility location 
problem and ad-hoc heuristics to solve it. We also propose a 
virus spread model (equivalent to an interference function bet-
ween facilities) and show its impact on the fi nal layout. More 
details can be found in [3].

3 Applications

We show here a real case in Denmark to test the impact of 
optimizing table location in the restoration business: the brew-
pub Brus, in Copenhagen. Brus has an available outdoor area 
where tables can be placed. Using online satellite views (fi rst 
plot of Figure 4), we identifi ed the available area for tables 
(red area in the second plot of Figure 4). Note that the pre-
sence of a tree does not allow to place tables in the middle 
part of the area, which was therefore excluded from the set of 
available positions. Being able to easily exclude areas from 
the optimization may also allow for the defi nition of free cor-
ridors for customers or personnel movements.

3.1 Fitting more tables under social distancing rules

The fi rst problem we would like to solve is to place as many 
tables as possible in the available area, while of course com-
plying with the minimum distance between tables imposed by 
country’s regulations. 

As discussed also in the introduction, the manual way to solve 
this problem is typically to locate tables on a regular grid, star-
ting from one angle of the available area and locating each 

Figure 3: Are virus spread and wake eff ect so diff erent after all?
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new table at the given minimum distance. The manual layout 
is defi ned here by imposing a regular grid starting from the top 
corner of the available area (shown on the plots of Figure 5). 
The manual approach could locate 30 tables (red dots in the 
fi rst plot of Figure 5. Our optimization method could locate 36 
tables (red dots in the second plot of Figure 5). Having 6 more 
tables increases the capacity for customers of 20\%: this can 
make a signifi cant diff erence in terms of daily profi ts of the 
brewpub, without impacting the compliance to the local social 
distancing rules (here assumed to be 3m) and the safety of 
the customers. 

It is clear from this test (and others in [3]) that the optimal place-
ment of tables is often not straightforward, and that the usage 

of optimization methods can signifi cantly increase the capa-
city of a restaurant to fi t customers, and thus its daily revenue.

3.2 Fitting a given number of tables while  minimi-
zing virus spread

Another variant of the problem consists in fi tting a fi xed 
amount of tables in the area, while maximizing the safety 
of the customers. or these tests, we want fi t as many tables 
as in the manual solution (see fi rst plot of Figure 5) but in a 
safer way. In other words, with respect to the previous test, 
the focus is now shifted from maximizing the number of tables 
to minimizing the virus spread, while still fulfi lling the country 
regulations on minimum table distances.

Figure 4: Example of optimization of table placement for the outside 
serving area of a brewpub in Denmark. The available area for placing 
tables is highlighted in red in the second plot.

We will therefore still require the minimum distance of 3m bet-
ween tables, but we impose to locate 30 tables in the Danish 
brewpub (while have seen that up to 36 tables could fi t). Using 
the virus-spread function defi ned in [3] to measure the actual 
risk of infection between tables. The resulting layout is shown 
in Figure 6. Also this layout confi rms that the positions on the 
borders are safer than those in the middle of the area.

Beach umbrellas

Another possible application of our optimization method is 
the optimal location of umbrellas on a beach. This summer, 
many seaside activities have been challenged by the 
COVID-19 restrictions, and owners of seaside areas faced 
diffi  culties in secure their income while ensuring safety.
In countries like Italy, many beach areas are managed 
by privates who rent beach facilities (such as umbrel-
las, sunbeds, chairs, etc) to customers. Due to COVID-
19, social distance limitations also apply in defi ning the 
position of the umbrellas on the beach. Using optimiza-
tion methods instead of relaying on manual layouts, can 
have a big impact also in this case, allowing one to fi t 
more customers while not compromising on their safety.
For example, we considered a real case from beach ``Bagni 
Alberoni”, located in Venice, Italy. The fi rst plot of Figure 7 
shows the actual layout designed by the beach owners to 
cope with the required 4m minimum distance between umbrel-
las. This solution locates 203 umbrellas in the available area.
We gave the same area (in blue in the second plot of Figure 7) 
on input to our optimizer, together with the minimum distance 
of 4m with the goal of fi tting as many umbrellas as possible 
within the given limitations. Our optimizer was able to fi t 211 
umbrellas --- having 8 more umbrellas to rent out over the 
whole summer season, can make a signifi cant economical 
impact for local business. 

Figure 6: Minimizing virus spread for a fi xed number of facilities smal-
ler than the maximum capacity.

Figure 5: Example of optimization of table placement for the outside 
area of ``Brus” brewpub in Denmark. Tables are placed following a 
manual approach (based on a super-imposed 3m $\times$ 3m regu-
lar grid) in the fi rst plot. The second plot shows the optimized place-
ment of tables at a minimum of 3m distance, using an optimization 
tool: 6 more tables can be located.
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Conclusions

We have studied the problem of locating facilities in a 
given area, subject to social distancing constraints as 
those arising at the time of COVID-19. We have propo-
sed an analogy between this problem and the one of 
locating wind turbines in an off shore area, which allo-
wed us to apply state-of-the-art solution approaches for 
the latter problem to produce optimized facility layouts. 
Real examples have shown that improved solutions can be 

obtained with less-regular (but more effi  cient) layout patterns 
than those typically found manually.
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Figure 7: Example of a real case---the Venice beach ``Bagni Albe-
roni”. Beach umbrellas must ensure a minimum distance of 4m 
(center-to-center). The manual solution actually implemented (top) 
allocates 203 beach umbrellas, while the optimized one (bottom) is 
able to fi t 211 beach umbrellas using a less-regular pattern.
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By  Niels-Christian Fink Bagger, Evelien van der Hurk, David Pisinger

Splitting Social Networks to Limit the Spread of 
COVID-19

The COVID-19 pandemic caused many countries to lock 
down large parts of society by establishing diff erent policy 
measures aimed at limiting total contacts as a mean to decre-
ase the spread of the virus. People are working from home, 
cultural events are cancelled and people can only meet up in 
small gatherings, meaning that the contacts between individu-
als have signifi cantly dropped. Although the need to prevent 
the uncontrolled spread of COVID-19 is clear [1], the set of 
successful policy measures that enable this is not.

 

Which limitation policies should we introduce? How strict 
should they be? Can we increase the number of contacts that 
we fi nd important, like family and friends? Which people at a 
workplace need to work from home, and how often? Which 
of the students at a course can be present at a lecture? 
These are some of the questions that will be investigated 
by the research project Finding the ”new normal”: the power 

of distinct contacts at the Technical University of Denmark 
funded by the Independent Research Fund Denmark. The 
objective of the project is to provide decision support tools to 
enable policymakers to evaluate, compare, and suggest new 
contact limitation measures with the objective of maximizing 
the number of contacts allowed while staying within a target 
acceptable disease spread.

Methodology

One of the most common ways to simulate a disease is via 
compartmental models such as the SEIR model [2]. These 
models try to predict things such as the spread of the disease, 
the total number of infected, the duration of the epidemic, or 
the eff ect of diff erent policy measures. In the SEIR model the 
population is assigned to four compartments labeled, S, E, I 
and R (Susceptible, Exposed, Infectious and Removed). The 
susceptible compartment contains the individuals that have 
not been infected by the virus. A susceptible individual can 
transition to the exposed compartment when it gets into con-
tact with an infectious individual and contracts the disease. The 

exposed compartment contains the individuals that have been 
infected, but cannot yet infect other individuals. The infectious 
compartment contains the individuals that have been infected 
and can infect others. The removed compartment contains 
the individuals that have been infected by the virus and have 
either recovered from the disease or died. An individual can 
transition from S to E, from E to I and lastly from I to R. The 
transitions between the compartments are illustrated in Figure 
2. In Figure 2, the boxes illustrate the compartments and the 
arrows illustrate the transitions between compartments. The 

Figure 1: A Coronavirus

Figure 2: The SEIR (Susceptible, Exposed, Infectious and Removed) 
compartmental model
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notation above the arrows describe the transition rate between 
the compartments at a time step. It is assumed that the tran-
sition rate from S to E at a given time step is dS/dt = −βSI/N, 
where S, I and N are the number of susceptible individuals, 
infectious individuals and the total population respectively. β 
is the probability that the individuals in the population gets into 
close contact, multiplied by the probability of getting infected 
from such a contact. It is assumed that the probability of an 
individual to transition from E to I is μ, so if E is the number of 
exposed individuals at a time step, then μE of those individu-
als will transition to the infectious compartment. This means 
that an individual is expected to spend μ−1 time steps in the 
exposed compartment. This is referred to as the incubation 
time. The transition from I to R is given by the probability γ, 
which means that the individuals are expected to be infectious 
for γ−1 time steps, and γI individuals will transition from I to R 
at a given time step where I is the number of infectious indivi-
duals in that time step. The system can be described using the 
following diff erential equations:

 Some of the challenges regarding these compartmental 
models is the diffi  culty to evaluate individual based measures, 
such as self-quarantining. When an individual gets infected 
and discovers that they are infected, they are likely to go into 
self-quarantine and get tested for COVID-19. If an individual 
gets tested positive for COVID-19, it is attempted to trace the 
individuals that the infected has been in close contact with for 
the last couple of weeks.

The close contacts of the infected individual are then also 
likely to go into self-quarantine and get tested for COVID-19. 
As many limitation policies are limiting the contact between 
people it makes sense to look at the spread of the virus in 
network models [3], where every individual is represented by 
a node, and the contacts between individuals are represented 
by edges. Such models makes it easier to track individuals 
that have been in contact with each other for the self-qua-
rantining measures. In the network models we still use the 
compartmental models by assigning the label to each node of 
the compartment that the corresponding individual is in. While 
a node is labeled E (or I) then, at every time step, the node 
is randomly assigned the label I (or R) with probability μ (or 
γ). The networks we consider are dynamic as individuals do 
not meet in every time step, so the edge between two indi-
viduals are only active in time steps where they meet, i.e., 
the virus can only be transmitted from an infectious node to 

a susceptible node, in a given time step, if the nodes share 
an edge, none of them are in self-quarantine, and the edge 
is active. This means that the transitions from compartment S 
to E, are based on the structure of the network and the state 
of the nodes, where by state of a node, we mean which label 
is assigned and whether or not it is self-quarantined. Most 
research in the spread of a virus in networks are considering 
static networks, but as most social contacts are varying over 
time, dynamic networks are more interesting.

 

In our research we consider dynamic hyper graphs to esti-
mate the contact patterns between individuals. We use the 
hyper graphs to evaluate the spread in a population within a 
fi xed time horizon. Just like in regular networks, every node 
in the hyper graph corresponds to an individual in the popula-
tion that we are considering. Instead of edges, we have hyper 
edges. A hyper edge is not restricted to connect at most two 
nodes, but can connect any number of nodes. Every hyper 
edge in the hyper graph corresponds to a group of individuals 
meeting up one or more times during the time horizon, where 
the hyper edge is active, i.e., like in regular networks, virus 
can only be transmitted via the hyper edge at every time step 
that the hyper edge is active. As an example, a course at a 
university could be represented by a hyper edge, where the 
nodes that are contained in the hyper edge corresponds to the 
students that are following the course and where the hyper 
edge is active every time there is a lecture in the course.

The reason we consider hyper edges, is that some limita-
tion policies can be seen as splitting up hyper edges. As an 
example, if we have a limitation policy that at most 10 individu-
als are allowed to meet at any time, that corresponds to limit 
the hyper edges to contain at most 10 nodes, so for any hyper 
edge containing more than 10 nodes, we split the hyper edge 
into multiple hyper edges, such that each hyper edge contain 
at most 10 nodes. In this way, we only need the information 
about the hyper graph itself, whereas, if we used a regular 
graph, then we would need additional information about how 
the graph was constructed, to be able to evaluate the changes 
to the graph due to the limitation policies.

Figure 3: Example of a network of individuals (nodes) and the con-
tacts (edges).
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When limitation policies are introduced, the split of the hyper 
edges is uncertain as we cannot know how the graph is 
decomposed, e.g., if there is a limit on social gatherings for 
10 people, we cannot know which 10 people diff erent indivi-
duals meet up with at social gatherings. Some places we can 
have impact on how the graph is decomposed, this could be 
schools, universities or work places, and these are the cases 
we are initially considering in the project. One of our current 
focus areas is to investigate the best way to split a given hyper 
graph, with a given set of restrictions that limits the size of the 
hyper edges, where we are currently looking into minimizing 
distinct contacts.

Distinct Contacts

Given a hyper graph G = (V,H), we defi ne the set of distinct 
contacts as the set:

 Given a maximum size      , the objective 
is minimize the set of distinct contacts by replacing each hyper 
edge        with a new set of hyper edges such that the 
number of hyper edges in this new set does not exceed         
and the number of nodes in each of the new hyper edges 
does not exceed Mh, while ensuring that all the nodes h are 
contained in the union of the nodes of the new hyper edges. 
Each new set of hyper edges that replaces an existing hyper 

edge is called a split of the hyper edge h. The total 
set of all the new hyper edges is called a split of the hyper 
graph. In the following defi nitions we state what a feasible split 
is.

Defi nition 1. Consider a hyper graph G = (V,H), a set of maxi-
mum sizes  and a set of hyper edges H’. The 
set H’ is a feasible split of H if, for every hyper 
edge , there exists a set of hyper edges such 
t h a t H’’ where the following conditions a r e 
fulfi lled:

 

If the conditions are fulfi lled in Defi nition 1, then H’’ is a feasi-
ble split of h, and H’ is a feasible split of H. We use the terms, 
feasible split of H and feasible split of G interchangeably as 
we only consider splitting up the graph by the hyper edges.

Currently in the project, we are working on models and algo-
rithms to split the hyper edges, such that the number of 
distinct contacts are minimized, and then we intend to run 
the simulations on the resulting hyper graphs to evaluate the 
eff ect of decreasing the number of distinct contacts. Note that 
the number of distinct contacts for a node in the hyper graph, 
corresponds to the degree of a node in a regular graph. Early 
research has considered nodes with a high degree as super 
spreaders, but it has later been challenged that other mea-
sures are more important when trying to predict the outbreak 
[3]. Later in the project, we intend to look into these and other 
measure to use for splitting the hyper graphs, e.g., by identi-
fying community structures [4]. Such measurements include 
vitality and centrality, e.g., node vitality, closeness centrality 
and betweenness centrality [4]. We hope to include these 
measurements into our splitting algorithms so we can provide 
tools for, e.g., employers or university administrations to help 
them in limiting epidemics while interfering as little as possible 
in the daily activities.
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By  Linnea Ingmar 

Modelling Diversity of Solutions

While the majority of the literature within optimisation focuses 
on fi nding a single optimal solution to a given optimisation pro-
blem, my master thesis project [1,2] investigates the problem 
of fi nding a set of (near-optimal) solutions that illustrate some 
form of diversity.1 

Motivation

The reason why we started working on this problem was an 
industrial collaboration within the research group at Monash 
University in Australia – where I was working during the thesis 
project – concerning the layout design of a chemical plant. This 
is an extremely complex problem involving fi nding 3D-posi-
tions for pieces of equipment and routing connecting pipes, 
subject to construction, operation, maintenance and safety 
constraints [3]. The Monash researchers were developing an 
automatic tool for fi nding optimal plant layout designs, with 
the aim of replacing the previously manual design process. 
However, it was hard to capture all the important aspects of 
the problem with an objective function, and therefore the plant 
engineers were not completely satisfi ed with the designs sug-
gested by the tool. It seemed what was optimal in theory, was 
not optimal in practice.

This inspired us to work on diversity of solutions. Perhaps 
there are many plant designs with the same, or very similar, 
objective value, so why not present a set of candidate designs 
to the plant engineers?

As with most good ideas, we were not the fi rst to come up with 
this. In fact, there has been a lot of previous work on diversity 
of solutions in many contexts [4,5]. The key advantage of our 
work compared to previous approaches is that it is not tied to 
a specifi c problem or solver. Instead, it is a generic framework 
where diverse solution problems are specifi ed in a high-level 
constraint modelling language.
1 I wish to give credit to my eminent supervisors Prof. Maria Garcia 
de la Banda, Prof. Peter J. Stuckey, and Dr. Guido Tack, at Monash University, 
Australia.

So far so much talk about diversity. Now for the obvious que-
stion: what is diversity?

Modelling Diversity

The simple answer is: what diversity is depends on your 
problem. Consider again the plant layout problem. It would 
be useless for the plant engineers to compare two designs, 
where in one of them each piece of equipment has just moved 
by a few millimetres compared to in the other design. From 
an engineer’s perspective, those two designs are identical. 
Instead, changing for example the relative positions of the 
equipment (e.g., swapping positions), or moving some spe-
cifi c piece of equipment by several meters, would be much 
more interesting for a plant engineer. Therefore, central to 
our modelling framework are user-defi ned distance measures 
between solutions. These distance measures are what defi -
nes diversity for your problem. The user specifi es the distance 
measures directly in the constraint model, depending on their 
interest and need. Of course, some generic measures of 
distance, such as Euclidian distance, can be used as building 
blocks when specifying them.

In addition to distance measures, our modelling framework 
consists of components for constraining the optimality of 
the solutions (e.g., in percentage of optimality), constraining 
distances (e.g., setting some threshold value on a distance 
measure), and combining several distance measures. The 
underlying problem that one specifi es with these compo-
nents is fi nding k maximally diverse solutions to the original 
constraint satisfaction (CSP) or optimisation (COP) problem, 
where the number of solutions k is a parameter to the pro-
blem.

I mentioned earlier that we implemented the framework in a 
high-level constraint modelling language. This language is 
called MiniZinc2  [6,7], and can be used to model CSPs and 

2 Available from https://www.minizinc.org/.
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COPs. The high-level MiniZinc model is compiled into a lower 
level language called FlatZinc, which is understood by a wide 
range of solvers. This means that you can try many diff erent 
solvers without having to change your model of the problem. 
At the time of writing, the diversity framework is not part of 
the offi  cial MiniZinc distribution, but hopefully it will be in the 
future.

Solving Diversity Problems

We investigate a few diff erent methods for fi nding diverse 
solutions. It is possible to solve the problem exactly (that is, to 
fi nd the set of provably maximally diverse solutions) by enco-
ding the problem into a new COP and essentially solving k 
copies of the original problem simultaneously. As you might 
guess, this method does not scale well, so we use a number 
of approximation methods: an iterative, greedy algorithm, a 
hybrid between the exact and the iterative method, and a 
post-hoc method that fi rst generates a big set of solutions and 
then fi lters out the k most diverse.

Evaluation

We illustrate the usability of the framework on a number of 
problems, some artifi cial and some real-world. Among the 
solution methods we can see no clear winner across all ben-
chmarks, so probably it depends on the application which one 
is best.

What about the plant layout design problem? Figure 1 shows 
three optimal designs (projected into 2D), with diff erent posi-
tions of the equipment relative to the big pipe rack in the 
middle. Unfortunately, my work on the other parts of the pro-
ject never left me time to learn the 3D CAD visualisation tool 
we used. As a compensation for the resulting poor image qua-
lity of Figure 1, I will instead end with a picture of a wallaby 
(Figure 2). Thanks for reading!
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Figure 2: A wallaby, which belongs 
to the same diverse class of mam-
mals – marsupials  - as the kanga-
roo.

Figure 1: Three diverse optimal solutions to a small instance of the 
plant layout problem. Equipment encircled with red have diff erent 
relative position to the pipe rack across the solutions. 
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By  Peter Emil Tybirk

DORS Price Winner Article
A primer on reinforcement learning for combi-
natorial optimization

Introduction
For most operations research researchers and practitioners, it 
is enticing to ride along the machine learning (ML) hype-train 
and leverage some of the exciting new techniques which has 
risen to fame during the last fi ve to ten years.  Combinatorial 
optimization (CO) lies at the heart of many of the problems 
which OR researchers study and posing the question of how 
machine learning techniques can help to solve combinatorial 
optimization problems is therefore natural. 

There are several paradigms in machine learning that, in dif-
ferent ways, can be useful when solving combinatorial optimi-
zation problems. The omnipresent supervised learning para-
digm is probably the most widely used and studied. Supervi-
sed learning be utilized in many ways when solving combina-
torial optimization problems. Supervised learning is in essence 
function approximation, i.e. to ‘learn’ a mapping f:X→Y bet-
ween inputs x   X and outputs           .

In the most ambitious setting, X would contain all conceivable 
instances of a certain type of combinatorial optimization pro-
blems and Y the corresponding optimal solutions, and f would 
be a function that given any          could produce an optimal 
solution. It is unrealistic to expect such an approach to have 
success in general as the existence of f in a space of functions 

which we can both defi ne and approximate well is a pretty 
tough precondition. The most promising class of functions to 
look for f in may often be in one of the many variants of graph 
neural networks (GNNs). GNNs are a class of neural networks 
designed to take graphs as inputs and output e.g. a class, a 
number or another graph.  Decent attempts at utilizing super-
vised learning in this ambitious setting have been made for 
several classes of combinatorial optimization problems [1].

An approach with more immediate potential is to use ML 
techniques as subroutines in a CO algorithm. This can be 
framed in the state/action framework known from Markov 
Decision Processes (MDPs). The framework is applicable 
both for exact and heuristic algorithms. For instance, an action 
could be the choice of variable to branch on in the context 
branch and bound for Mixed Integer Linear Programs. Or an 
action could be which local-search strategy or permutation to 
apply in a heuristic algorithm. Supervised learning techniques 
are typically used to improve an already existing algorithm 
for a problem, whereas reinforcement learning typically is an 
‘end-to-end’ approach which requires less a priori knowledge 
about the specifi c problem. 

Reinforcement learning
In contrast to supervised learning, reinforcement learning 
does not require training examples with optimal solutions to 
learn from. Reinforcement learning in general revolves around 

Figure 1: Example graph neural network 

Figure 2: State/action framework
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an agent trying to maximize a notion of reward in an environ-
ment by choosing the right actions. 

The most famous application of RL techniques is probably 
the groundbreaking AlphaGo and AlphaZero which tackled 
the board games Go and Chess and set new standards in 
both games. It was the fi rst time an algorithm bested the best 
humans in Go – a game previously thought to be out of reach 
for computers for many years to come. Board games such 
as Chess and Go bear many similarities with combinatorial 
optimization problems (some CO problems can even be 
transformed into games [2]), which makes applying the same 
techniques appealing. 

There are several ways to frame combinatorial optimization 
problems in a reinforcement learning context – depending 
on how one chooses to represent the four core components, 
the state space, the environment, the action space, and the 
reward structure. Defi ning these three properly central aspects 
is the key to utilize reinforcement learning for combinatorial 
optimization. In the following sections are some examples of 
how these core components can be defi ned for CO problems.

The environment
The environment encompasses diff erent instances of the 
same class of combinatorial optimization problem. During 
training, the agent should see many diff erent instances of a 
given class of CO problems to be able to generalize and learn 
the common structure such problems share. 

An important design choice is how to defi ne what constitutes 
an episode (a ‘round of training’). A popular framework is the 
solution construction framework - to build a solution from 
scratch and stop once a feasible solution has been reached. 
In a sense, RL would in this case constitute a greedy algo-
rithm where the agent iteratively constructs a solution using 
a learned greedy measure, which is continuously improved 
during training (if all goes well!). 

Another framework is the solution mutation framework where 
an action turns one feasible solution into another one with the 
goal of fi nding the optimal solution (the agent of course has 
no general way to know that an optimal solution is reached 

unless it hits a known lower bound). An episode in this case 
could for instance stop once a certain number of actions have 
been made without improvement to the best seen objective 
value. 

Not all CO problems are well-suited for both frameworks. 
For instance, if fi nding a feasible solution is in itself diffi  cult, 
neither approach can be expected to succeed.

The action space
The action space inherently depends on the nature of the opti-
mization problem and the choice of framework. 

In the construction framework it is often straightforward to 
defi ne the action space – it could for instance consist of all the 
unused edges in a graph, and an action could be to include 
an edge.

In the mutation framework an action can have diff erent levels 
of granularity. The purest and most ambitious approach is to 
go with as granular actions as possible, i.e. to let actions be 
very small mutations of a feasible solution. In the travelling 
salesman problem (TSP), this could for instance be a single 
2-opt exchange. 

Another approach is to let actions consist of existing heuri-
stics for mutating a solution, e.g. diff erent variants of a local 
search, diff erent perturbations to escape local minima, etc. 
Reinforcement learning can in this context be seen as a kind 
of hyperheuristic, where the goal of the agent is to learn to 
compose (meta)-heuristics depending on the state of the opti-
mization problem. An immediate advantage of this approach 
is that it can help identify good combinations of heuristics, 
see fi gure 3.

In the ‘fi ne-grained’ setup, the agent is on the other hand not 
constrained by the inherent limitations in the available heu-
ristics but faces a much more daunting task requiring more 
‘deep’ choices which refl ect the full state of the current solu-
tion – if this approach is implemented successfully it has 
larger potential as the agent is not constrained by the avai-
lable heuristics, but actually making it work is a much more 
diffi  cult task. 

Figure 3: Proportion of actions taking by diff erent agents in each epi-
sode - the agents learn to prefer a combination of action 3, 9 and 16
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The state space
Designing the state space, one should include all information 
necessary for the agent to make the right actions. However, 
including too much information may introduce unnecessary 
complexity and increase the computational eff ort needed. 

The construction and the granular mutation approach require 
a complex state representation to represent the current solu-
tion and enable the agent to make ‘informed choices’. In the 
TSP, the agent would for instance need to know distance bet-
ween each of the nodes in the graph. An immediate conse-
quence of a complex state-space is that the state-action value 
function which needs to be approximated in most RL algo-
rithms would also be complex – probably a variant of a GNN. 

By contrast, the coarser mutation based approach requires 
less expressivity in the state, and thus simpler function appro-
ximations will also suffi  ce.  In this case, the state could con-
tain some history of actions, short and long-term memory, the 
current objective value and other key statistics about the cur-
rent solution.  

The reward structure
The fi nal piece in the puzzle is the reward structure. In the 
construction approach, the objective value in the constructed 
solution immediately comes to mind. One important thing to 
consider is a scaling of the rewards such that the reward does 
not increase or decrease merely by scaling all values in the 
problem, as the reward needs to be similar across diff erent 
instances of the same problem. One simple way of achieving 
this would be to scale the reward by some value related to the 
problem to achieve a ‘relative performance’ (RP), for instance 
the relative performance at time t may be defi ned as

Where LB is some lower bound on the objective value, and 
UB some upper bound. In the construction approach, a 
reward would only be given at the end of an episode once a 
solution is reached. In the mutation-based approach a similar 
approach can be used, e.g. by giving a reward each time the 
relative performance is improved, and perhaps giving out 
more reward when the relative performance is already good, 
e.g.

Note that this is assuming we are considering a minimization 
problem – similar structure can easily be defi ned for a maxi-
mization problem.

 

Final thoughts
The above sections described the basic building blocks 
needed to apply reinforcement learning for combinatorial 
optimization. The rest of the work is picking your favorite RL 
algorithm and function approximator, which should of course 
match the state representation. Luckily there exists a lot of 
well-documented software packages (especially in Python) 
which provide RL and/or function algorithms off -the-shelf, so 
you just need to pick your favorite CO problem, defi ne these 
building blocks, and have fun watching the agents train!

There has not yet been a breakthrough in RL for CO of the 
same magnitude as AlphaZero, but the approach has shown 
good potential on a range of problems, and I strongly believe 
that a breakthrough is coming. In my master’s thesis, I propo-
sed and used the mutation-based approach to discover eff ec-
tive heuristics for the fi xed-charge transportation problem – in 
the end a new state-of-the-art heuristic was developed, not 
relying on RL per se, but heavily inspired by the strategies 
found by RL agents. 

If this article aroused your curiosity, you can read more and 
see an example implementation of reinforcement learning for 
the fi xed charge transportation problem here: https://github.
com/Tybirk/RL-FCTP (feel free to reach out with questions!) 
and fi nd papers and code on other implementations of rein-
forcement learning for solving combinatorial optimization pro-
blems here: https://paperswithcode.com/task/combinatorial-
optimization. 
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DORS Price 2020 Announcement

DORS - Danish Operations Research Society – hereby 
ask for candidates for Denmark’s  best master thesis pro-
ject in Operations Research

The invitation is open for all and not just members of DORS - 
so please share!

A thesis can only be submitted by the supervisor and must 
comply with the following:

• The thesis is written at a Danish university and should 
involve Operations Research

• The thesis is written in Danish or English

• The thesis has been defended in 2020

The committee will put emphasis on analyzing and solving 
practical problems when selecting the best thesis

To enlist a thesis as candidate for the DORS prize 2020, the 
supervisor should send an email no later than 31st of January 
2021 to secretary@dorsnet.dk with the following:

• The thesis (attached as pdf)

• A description of why the thesis should win the prize (max 
1 page), written by the supervisor. (attached as pdf)

• The grade of the thesis

• Email addresses and phone numbers of the authors of 
the thesis and the supervisor 

After the thesis is submitted to DORS the following occurs:

• DORS sets up a committee of three professionals.

• In the end of February 2021, the committee writes a con-
fi rmation email to the supervisors and authors of the sub-
mitted theses.

• In the middle of March 2021, the committee appoints a 
winner and informs all the participants 

• The prize is awarded at the General Assembly of DORS 
in April 2021. The prize is of 5000 DKK to share between 
the authors of the thesis. 

• To receive the money, the authors are required to write a 
short article to ”ORbit” regarding the thesis.

Please write secretary@dorsnet.dk if you have any questions.
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Quayside Planning in Container Terminals
An Applied Study of Quay Crane Scheduling

Purpose

This thesis addresses operational aspects in quay crane sche-
duling (QCS). At fi eld studies conducted in three terminals, 
it was observed that plans from commercial QCS planning 
tools were discarded straight away and adjusted manually to 
account for operational aspects. The purpose of this thesis is 
to improve quay side planning and operation through better 
quay crane scheduling. On a high level the hypothesis is that 
better QCS can reduce vessel makespan via better utilisation 
of QCs and thereby increase terminal capacity. The thesis 
focuses on two main topics: 1) Improve QCS by bridging gaps 
between state-of-the-art planning models and terminal ope-
rations. 2) Reveal insights on key factors for the QCS. In this 
article for ORbit, only a subset of content addressing 1) is pre-
sented due to brevity and confi dentiality matters. The project 
is conducted in collaboration with Portchain. Portchain is a 
Danish start-up company focused on solving the hardest plan-
ning problems in shipping. Their container terminal solution is 
currently used by several terminals globally.

Introduction

Around 80% of the global trade volume and 70% of global 
trade value is carried by sea and handled by sea ports. Con-
tainerised maritime trade has historically been growing 3-4% 
per year to account for 18% of volume and 60% of value for 
all maritime trade in 2018 ([UNC18], [UNC19], [Dep20]). Port 
calls have become a key bottleneck for containerized ship-
ping due to increasing vessel sizes the last two decades. 
Since mid 00’s the largest container vessels have grown from 
around 10,000 to 24,000 TEU [Cou20]. The increased size 
implies increased container throughput per port call and incre-
ased complexity of terminal planning. A rough analysis on a 
recent study reveals that major liner services typically spend 
10-20% of the total round trip time in port ([CS19]). Vessel 
fuel consumption increases with a cubist relation to speed, 

hence reduced time in port will i.a. enable reduced consump-
tion of costly and polluting bunker fuel by sailing slower. It is 
estimated that the average utilisation of major container ter-
minals is around 70%. At the same time, the direct berth rate 
in major terminals is only at 80-90% and the average waiting 
time to berth is 7-9 hours ([Kno15], [Moo17], [Res19]). The 
paradox of having waiting time while not having full utilisa-
tion is caused by several factors, with ineffi  ciencies in termi-
nal planning and operations accounting for 86.1% of the liner 
scheduling unreliability, as observed in fi gure 1. 50% of the 
vessels are delayed by 12 hours or more. For ultra large con-
tainer vessels, capacity of +15.000 TEU, the waiting time is 
often higher due to fewer quay cranes at the terminals being 
capable and available of handling the ultra large vessels 
([Tec15],[Boy19],[PS19]).

Better planning supported by data driven decision tools can 
increase terminal utilization and reduce waiting time and 
delays. In other words, the terminal capacity can be increased 
without investing in additional heavy assets. It is estimated 
that better planning can increase capacity by 10% in most 
terminals [Boy19]. Quay crane scheduling (QCS) is a key link 
in the planning chain and is considered to be the hardest to 
solve from a computational point of view ([BM10],[BM15]).

Figure 1: ”Causes for liner shipping delays [Not06]”
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Operational Quayside Planning

Quayside planning consists of berth allocation, quay crane 
assignment and quay crane scheduling chronologically 
depicted in fi gure 2. The berth allocation defi nes when and 
where the vessel is berthed along the quay. It is planned up 
to two weeks ahead of vessel arrival and is based on depth 
requirements, quay crane requirements and container positio-
ning on the yard. The quay crane assignment (QCA) defi nes 
which quay cranes will be assigned to the vessel in each time 
window. It is planned up to one week ahead of vessel arrival 
and is based on the expected productivity, the total moves, 
blue collar gang working hours and the berthing. The quay 
crane scheduling defi nes the bays each QC should operate 
on the vessel at a given time. This is planned 0-48 hours 
ahead of vessel arrival and is based on the vessel discharge 
and loading plans, the quay crane allocation and the yard allo-
cation. This thesis focuses on quay crane scheduling (QCS), 
which is considered the hardest problem from a computatio-
nal point of view ([BM10],[BM15]).

Planning KPIs

The main QCS KPI for terminals is to deliver the promised 
makespan for a vessel. The planned makespan is usually 
based on a contractual agreement of the average berth moves 
per hour between the terminal and the carrier. The shortest 
possible makespan increases quay capacity for the terminal. 
Furthermore, it allows vessels to slow-steam which yields sig-
nifi cant bunker cost savings for the carrier. However, planning 
the shortest possible makespan is of high risk to delays due 
to the uncertain nature of physical operations but also due to 
simplifi cation of the plans. The QCS planners operate after 
three KPIs ranked in order of importance:

The reliability KPI covers a) how often the planned makespan 
is eff ectuated and b) how many times the plan needs to be 
changed during operation. Planning to minimise the makes-
pan is the second KPI. The third KPI is to minimise QC moves 
between bays as it increases safety risk and decreases the 
productivity. However, moving QCs between bays increases 
fl exibility and thereby reliability.

QCS Modelling Branches

The academic QCS literature can be segmented in three main 
branches based on the discretization level of jobs: bay models, 
group models and single container models. Figure 4 shows 
an example where a total of 10 container moves is discretized 

in one, four and 10 jobs for each branch respectively. The 
majority of the literature formulates the QCS as bay or group 
models, however recent research proposes single container 
models. Several articles point out Kim and Park [KP04] to 
bring the initial formulation for group level modelling. Bay and 
group models have achieved far better computational speed 
than single container models ([CLG14],[Msa+18],[STB19]).

In this study, the group modelling approach is identifi ed to be 
best suited based on literature results, experimental analy-
sis and a fi t-for-purpose assessment rooted in data gathering 
from site visits at three container terminals.  

Figure 2: “Berth allocation (each square represents a vessel), QCA 
and QCS.”  

Figure 4: “Bay, group and single container modelling of a generic 10 
move bay.”
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Operational Rich Planning vs Basic Plan-
ning

A mathematical model F covering the key operational aspects 
of the QCS is developed based on inputs from planners and 
managers at the terminal visits. F is assumed to refl ect the 
actual operation. The hypothesis that a model FB covering the 
basics only can generate as good a plan as the operational 
and more complex model F is tested. The deviation in makes-
pan from FB plans in operational environment compared to F 
for benchmark suites A, B and C, is listed as (I) in table 1. (II) 
lists the results when planning FB including superstructures 
and booming. (III) lists the results when planning FB including 
dual cycling. A plan by FB lasts 96 minutes (4.5%) longer on 
average than a plan by F, when tested on benchmark suite 
C. Accounting for dual cycling (III) yields the smallest devia-

tion to the makespan by F. Accounting for superstructure and 
booming (II) has limited eff ect on the decrease in makespan 
deviation.

Summing up the main fi ndings regarding the operational rich 
planning it is found that: (1) FB estimates a similar makes-
pan as F in less computational time. (2) Plans by F can be 
operationally executed with lower makespan than plans by 
FB. As stated in fi gure 1 slower loading and discharging than 
expected accounts for 20% of the liner scheduling unreliabi-
lity. This is in accordance with the analysis performed which 
found up to 4.0% gap between the estimated makespan by 
FB and its actual makespan in operational environment. It is 
further found that planning with F enables up to 4.5% shorter 
makespan than planning with FB. Lastly, it is worth noting that 
the ultra large container vessels are not covered by bench-
mark suit A, B and C by Meisel, hence even higher deviations 
could potentially be found.

Conclusion

This thesis addresses operational aspects in quay crane sche-
duling (QCS). At fi eld studies conducted in three terminals 
it was observed that plans from commercial QCS planning 
tools were discarded straight away and adjusted manually to 
account for operational aspects. A benchmarking of state-of-
the-art QCS MIP modelling branches led to the selection of 
a group based unidirectional MIP formulation as base model 

FB. A revised rich MIP formulation F is proposed to account 
for operational aspects which have not been covered in pre-
vious studies e.g. dual cycling. F and FB estimate the makes-
pan within 3% diff erence. Execution of the FB is by simulation 
found to be 4.5% longer than execution of F, equaling more 
than one and a half hour for vessels with 20 bays and 6000 
total moves. The substantial diff erence justifi es the comple-
xity of the proposed operational richness. The operational 
richness increases computational time from on average 4s to 
100s for large instances. A proposed matheuristic, based on 
adding restrictive constraints to the model, enables the rich 
model F to be solved in 7.0 seconds with 0.1% optimality loss 
on average. The model can serve as basis for an operational 
optimisation tool for terminal planners given its short compu-
tation time and the fl exibility off ered by the rich model.
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By  Dennis S. Holm, Rasmus Ø. Mikkelsen, and Thomas Stidsen

Winning the International Timetabling Competi-
tion 2019

1 Introduction

The International Timetabling Competition 2019 (ITC2019) 
is the fourth such competition. The competitions are held to 
encourage research within the fi eld. The fi rst two competiti-
ons of 2002 and 2007 focused on simplifi ed university course 
timetabling, whereas the 2007 competition also included exam 
timetabling. The competition of 2011 focused on high school 
timetabling. The ITC2011 was groundbreaking because it pre-
sented the high school timetabling problem with a generalized 
formulation, such that it can be used at high schools world-
wide. The ITC2019 has the same groundbreaking aspect, 
but concerning university timetabling. The ITC2019 was pre-
sented with a generalized university course timetabling model, 
including student sectioning (assigning students to classes 
given the course assignment). The data used in the competi-
tion was real data from 10 universities from 5 continents. The 
competition started in November 2018 and fi nished one year 
later, November 2019, with the fi nal results presented in an 
online award ceremony on September 2, 2020.

2 The competition

The competition was presented at the International Confe-
rence on the Practice and Theory of Automated Timetabling 
(PATAT 2018) in Vienna, Austria. It was presented with a 
generalized problem description and a few test data sets of 
diff erent sizes. The problem formulated is a university course 
timetabling problem with student sectioning. The aim is to 
fi nd an optimal assignment of times, rooms, and students to 
events (classes) related to a set of courses. 

The formulation is derived from data from institutions wor-
ldwide, and thus it must include many diff erent aspects of 
timetabling. Some constraints are typical for all institutions, 
such as assigning all classes to a time and a room and forbid-
ding room double-booking. Other restrictions do not show too 
often, like discouraging the number of breaks on a day or the 

limitation of working hours for an instructor. So-called distribu-
tion constraints defi ne the restrictions between the scheduling 
of classes. There have been described 19 diff erent distribu-
tion constraints that can appear to be soft or hard. 

The competition was run through a website (www.itc2019.
org), where competitors could validate and upload solutions 
to the competition data instances. For each instance, the 
competitors were ranked against each other, and a score was 
given according to ranking. Thus the algorithm used is not 
handed over to the organizers, and neither were there any 
restrictions on the computer power used to generate the solu-
tions.

Three groups of data instances were released during the 
competition (early, middle, and late). The early instances were 
released on November 15, 2018, the middle September 18, 
2019, and the late instances on November 8, 2019. The fi nal 
score was based on the ranking of the solutions uploaded 
on the deadline date (November 18, 2019), where the later 
instances weighted higher than the earlier. See Table 1 for the 
scoring scheme. If two solutions are tied, the average points 
for the positions are granted for all solutions. If no solution is 
uploaded, the team is awarded zero points.

3 The competition problem

The generalized model is used to schedule a whole semester 
for an institution, usually between 13 and 21 weeks. The for-
mulation should then be able to model various time policies as 
institutions diff er in this aspect. Some institutions might have 
strict rules about when a class can start; for example, every 
hour (or quarter/half past), other institutions might be more 
relaxed, allowing classes to start whenever. The generalized 
problem handles the time diff erences by splitting a day to be 
into 288 timeslots (5 minutes each) from midnight till midnight 
for all the instances. Each class has defi ned a set of time 
patterns that can be used to schedule the class. The time pat-
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tern consists of a set of weeks, a set of days, a start time, a 
duration, and a penalty for using the time pattern. Thus, if a 
class can only be scheduled Tuesday every quarter past an 
hour, the class’s time patterns will refl ect that. Other diff eren-
ces shown in the data was the ability to schedule classes on 
single/multiple days, in the fi rst/last half of the semester, in 
odd/even weeks, and on evenings/Saturdays.

Most classes must also be assigned a room. Each class has 
given a set of available rooms associated with a penalty. The 
rooms’ availability and penalty are generated from various 
characters, such as the capacity, location, features, equip-
ment, and preference. On top of that, the room can have una-
vailable times that must be respected by the solution method.

The remaining restrictions of the timetable are given by the 
distribution constraints, which were briefl y mentioned ear-
lier. The distribution constraints explain the feasibility/penalty 
between scheduled classes. All distribution constraints con-
sider a set of classes that must be scheduled according to 
the distribution constraint type. All distribution constraint types 
are shown in Table 2 and can both appear as a soft or hard 
constraint. Most of the distribution constraint types are self-
explanatory. The ones that are not will be explained here. 
The Overlap and SameAttendees are closely related. The 
Overlap says that the classes cannot overlap in time; the 
SameAttendees specifi es that there should also be enough 
time for students to get from one class to the next. The travel 
distance between rooms is given in the data. If two classes 
are scheduled on the same day, it should be such that the 
travel time between the rooms is less than the time between 
the classes.

The WorkDay(S) limits the time between the fi rst start time 
and last ending time on any day, which must not be more 
than S timeslots. The MinGap(G) says that there must be 

Table 1: Points awarded per instance. Ranking is based on the com-
putation of points in the F1 championship

at least G timeslots between classes scheduled on the same 
day. The MaxDay(D) regulates the number of diff erent days 
used, which must not exceed D days. The MaxDayLoad(S)
restricts the number of timeslots on any day to be no more 
than S. The MaxBreaks(R,S) defi nes a block to be classes 
scheduled on the same day with at most S timeslots between 
them. The constraint says that there must be no more than 
R breaks between blocks on any day. The MaxBlock(M,S) 
also defi nes a block like MaxBreaks(R,S). This constraint 
limits the length of a block to be at most M time slots.

Having the available time patterns and rooms given for the 
classes and the distribution constraints restricting the sche-
duling between classes, we can create a feasible timetable. 

But some universities also consider the confl icts in the stu-
dents’ class assignments. The student sectioning must be 
performed according to the structure of the courses that the 
student must attend. A course may have a complex structure 
of classes: lectures, recitations, and/or laboratory. The course 
may have diff erent confi gurations where each student must 
attend one of the confi gurations. Each confi guration may con-
sist of one or more subparts where the student must attend 
one class from each subpart of the confi guration. An example 
course structure is shown in Figure 1. The students must be 
sectioned in classes such that the limitation of the classes is 
not exceeded. A class may also have a parent class, which 
means that students attending the class must also attend its 
parent class. Whenever a student is assigned two classes that 
overlap, either by the time pattern overlapping or the room 
assignment is too far apart, we have a student confl ict. Each 
student confl ict is considered a soft constraint and penalized 
in the objective function.

The reader might see that we now have four objective types: 

Table 2: The diff erent types of distribution constraints and whether 
they can be evaluated in pairs or not.
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the room penalties, the time penalties, the soft distribution 
constraints, and the student confl icts. Each institution may 
prioritize these diff erently; thus, the data instances contain a 
weighting between the four objective types.

4 Our solution approach

Our solution approach is strongly MIP based. We use MIPs 
to fi nd initial solutions, we use MIPs to improve solutions, and 
we use MIPs to prove optimality. But fi rst, as mentioned ear-
lier, the data is real-world data, and the problem with real-
world data is that real people have entered the data at some 
point, and real people tend not to have a full overview of their 
data. The fi rst step is thus to reduce the data instances by 
fi nding redundant information.

4.1 Reducing the data sets

The data contains redundant distribution constraints. This 
includes soft constraints with penalty zero, constraints consi-
dering only one class, and constraints of the same type where 
one set of classes is a subset of the other. These are remo-
ved.

To reduce the number of variables in the MIP, we reduce the 
number of available rooms and times for the classes. We do 
so by constructing a confl ict graph where a vertex corre-
sponds to a class-time assignment, and an edge is added if 
two vertices cannot both be chosen in a feasible solution. 
Some classes have only one available time, which means that 
it is a fi xed time. Any neighbor of a fi xed-time vertex is forbid-
den, and the neighbors can be removed from the graph. Also, 
considering a clique in the confl ict graph containing all verti-
ces of a class c1 and other vertices of classes ci ,  we 
know that one of those vertices of class c1  must 
be used in a feasible solution; the ci vertices can thus be rem-
oved. All removed vertices represent class-time assignments 

Figure 1: Example of hierarchical course structure with its XML spe-
cifi cation (Müller et al., 2018).

that cannot be used in any feasible solution, which means that 
the times can be removed from the classes. An equal proce-
dure is done for the class-room confl ict graph. 

4. 2 The MIP

The MIP considers the main binary decision variables xc,t,r, 
which is 1 if a class c is scheduled in room r at time t and 0 
otherwise. We also defi ne the binary auxiliary variables yc,t

and wc,r which exactly correspond to the vertices of the confl ict 
graph from section 4.1. If the problem includes student sec-
tioning, the MIP also contains binary decision variables es,c, 
which is 1 if a student is attending a class and 0 otherwise.

We use the confl ict graphs to model the distribution con-
straints that are pairwise comparable according to Table 2. 
A clique cover models the hard constraints. The SameAt-
tendees distribution constraint requires an additional confl ict 
graph on xc,t,r to model the time-room overlap. For the soft 
constraints, we use confl ict graphs as well. The edge weight 
corresponds to the penalty of breaking the soft constraint(s) 
defi ning the edge. The soft constraints are then modeled as 
a star cover. 

The student sectioning is modeled like the SameAttendees
constraint as they are equal in structure.

4. 3 Initial solutions

We have two methods for creating initial solutions. The fi rst 
splits the problem into two parts and is called the ’Two-Stage 
Constructive Algorithm’ (2SCA). The fi rst stage constructs a 
feasible timetable and the second part adds the student sec-
tioning. The fi rst step of 2SCA solves a MIP that does not con-
sider any soft constraints and no students. Stage two solves 
a MIP that assigns students to classes given the timetable 
from stage one.

The other initial solution method is the ’Three-Stage Con-
structive Algorithm’ (3SCA). The fi rst stage of 3SCA is to 
assign times to classes. The second stage is to assign rooms 
given the times from stage one. This is not always possible, 
and thus stage one must be repeated, disallowing any pre-
viously found time assignments. When a feasible time and 
room assignment has been found, stage three solves a MIP 
that assigns students to classes given their time and room 
assignments from stage one and two.

4. 4 Fix-and-Optimize

To improve the initial solutions, we introduce the Fix-and-Opti-
mize matheuristic. The Fix-and-Optimize splits the set of main 
decision variables into the two sets F and U. We can then 
optimize a subproblem where the variables of F are fi xed and 
those of U are not. The selection of the sets strongly aff ects 
the success of the matheuristic. If the size of U is large, the 
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problem can become too hard to solve in reasonable time. 
On the other hand, if U is small, it is unlikely the subproblem 
can be used to fi nd improving solutions. We defi ne diff erent 
heuristics to select U and update the size of U dynamically.

4.5 Computational setup

When the data was released, we started by reducing the data 
fi les as described. When we have created the reduced fi les, 
we started the 2SCA and 3SCA (Section 4.3), which were set 
to create a pool of initial solutions. In parallel, we started buil-
ding the full MIP (Section 4.2) and several Fix-and-Optimize 
(Section 4.4) algorithms with diff erent neighborhoods. The 
MIP is focusing on improving the lower bound while the Fix-
and-Optimize algorithms focus on producing improved solu-
tions that are passed to the MIP to help reduce the branch-
and-bound tree. The Fix-and-Optimize algorithms consider 
diff erent neighborhoods and regularly reset to the best-known 
solution. If enough time passes with no improvement in the 
best known solution, the Fix-and-Optimize algorithms enter 
diversifi cation mode. They individually start from a new initial 
solution from the initial solutions pool, they no longer share 
best-known solutions, and they choose a neighborhood at 
random. When an improving solution is found, they return to 
the normal strategy. The whole procedure terminates when 
the time limit is reached, or the MIP proves optimality.

5 The Results

On September 2, 2020, an online award ceremony was held, 
where the fi nal results were published. The fi nal ranking 
is shown in Table 3. The ceremony also revealed the met-
hods used by our competitors. The second place, Rappos 
et al. (HEIG-VD, Switzerland), also used a MIP approach. 
They combined their MIP model with a local search proce-
dure. The third place, Gashi et al. (University of Prishtina, 
Kosovo), used simulated annealing. The fourth place, Karim 
Er-rhaimini (Ministère de l’éducation nationale, France), 
used a forest growth metaheuristic. The fi fth place, Lemos et 
al. (Universidade de Lisboa, Portugal), used MaxSAT com-
bined with local search. At the time of the competition dead-
line, 15 teams had uploaded one or more solutions to the 
instances (including test instances). Even though the com-
petition has offi  cially ended, the website is still running, and 
a live scoreboard is kept updated. The number of teams has 
now increased to 20, and the site has 263 registered users 
from 57 countries. If you would like to read more about the 
competition, problem, or would like to give it a try to solve 
the problem, visit www.itc2019.org. If you would like to read 
more about our team and see our current solutions and lower 
bounds on the ITC2019 instances visit www.dsumsoftware.
com/itc2019
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By  Daniele Gammelli

A Machine Learning Approach to Shared Mobi-
lity Demand Prediction

1 Introduction

Being able to understand and predict demand is essential 
in the planning and decision-making processes of any given 
transport service, allowing service providers to make decisi-
ons coherently with user behavior and needs. Having reliable 
models of demand is especially relevant in shared transport 
modes, such as car-sharing and bike-sharing, where the high 
volatility of demand and the fl exibility of supply modalities 
(e.g., infi nitely many possible collocations of a car-sharing 
fl eet) require that decisions be made in strong accordance 
with user needs. If, for instance, we consider the bike sharing 
scenario, service providers face a great variety of complex 
decisions on how to satisfy user demand. To name a few, con-
crete choices must be made for what concerns capacity posi-
tioning (i.e., where to deploy the service), capacity planning 
(i.e., dimensioning the fl eet size), rebalancing (i.e., where and 
when to reallocate idle supply), and expansion planning (i.e., 
if and how to expand the reach of the service).

Demand modeling uses statistical methods to capture user 
demand behavior based on recorded historical data. Howe-
ver, historical transport service data is usually highly depen-
dent on historical supply off ered by the provider itself. In 
particular, supply represents an upper limit on our ability to 
observe realizations of the true demand. For example, if we 
have data about a bike-sharing service with 100 bikes avai-
lable, we might observe a usage (i.e., demand) of 100 bikes 
even though the actual demand might have potentially been 
higher. This leads to a situation in which historical data is in 
fact representing a biased, or censored, version of the under-
lying demand pattern in which we are truly interested. More 
importantly, using censored data to build demand models 
will, as a natural consequence, produce a biased estimate 
of demand and an inaccurate understanding of user needs, 
which will ultimately result in non-optimal operational decisi-
ons for the service provider.

To address these problems, we propose a general approach 
for building models that are aware of the supply-censoring 
issue, and which are ultimately more reliable in refl ecting user 
behavior. To this end, we formulate Censored Gaussian Pro-
cesses as a model of user demand. Using real-world datasets 
from Donkey Republic, one of the major bike-sharing services 
in Copenhagen, Denmark, we pit this model against non-cen-
sored models (i.e. models ignoring the censoring problem) 
and analyze the conditions under which it is better capable of 
recovering true demand.

2 Methodology

In this Section, we incrementally describe the building blocks 
of our proposed censored models. First, we introduce several 
general concepts: likelihood-based training, Censored like-
lihoods and Gaussian Processes. Then, we combine these 
concepts by defi ning the Censored Gaussian Processes 
which we will be using for our real-world experiments.

2.1 Machine Learning and Likelihood-
Based Training

Machine Learning (ML) is a branch of Artifi cial Intelligence (AI) 
that aims at discovering general principles underlying human 
learning, giving computers the ability to learn from experience. 
Current approaches in ML rely on extracting pattern and regu-
larities from data. Considering the transportation sector as 
an example, the always increasing amount of available data 
makes ML models essential in identifying patterns of move-
ments far better than even the most skilled human observer 
would be able to do. One of the most popular approaches to 
machine learning is known as Maximum Likelihood Estima-
tion (MLE). The idea behind MLE is to estimate the parame-
ters of any ML model by fi rst defi ning the model from a pro-
babilistic standpoint (e.g. parametrizing a specifi c probability 
distribution) and then estimate the parameters by maximizing 
the probability of the data given the model. In other words, 
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MLE enables us to fi nd the model which better describes our 
observable data (i.e. the model that gives higher probability 
to our data). In practice, MLE is solved as an optimization 
problem where the objective function is represented by the 
model’s likelihood. Diff erent likelihoods necessarily imply dif-
ferent objectives for our learned models. In this work, we will 
use the fl exibility of likelihood-based learning to encode in our 
models awareness towards the censoring problem.

2.2 Censored Likelihood

As a reference point for developing our censored likelihood 
function, let us now elaborate on the likelihood function of the 
popular Tobit censored regression model, described in [3]. For 
each observation yi, let yi* be the corresponding true value. 
For instance, in a shared transport demand setting, yi* is the 
true, latent demand for shared mobility, while yi is the obser-
ved demand; if yi is non-censored then yi = yi*, otherwise yi is 
censored so that yi < yi*. We are also given binary censorship 
labels li, so that li = 1 if yi is censored and li = 0 otherwise (e.g., 
labels could be recovered by comparing observed demand to 
available supply).

Tobit parameterizes the dependency of yi* on explanatory fea-
tures xi through a linear relationship with parameters β and 
noise term εi, where all εi are independently and normally 
distributed with mean zero and variance σ2, namely:

There are multiple variations of the Tobit model depending on 
where and when censoring arises. In this work, without loss 
of generality, we deal with upper censorship, also known as 
Type I, where yi is upper-bounded by a given threshold yu, so 
that:

The likelihood function in this case can be derived from Eqs. 
1 and 2, as follows.

1. If li = 0, then yi is non-censored and so its likelihood is:
where φ is the standard Gaussian probability density function.

2. Otherwise, i.e., if li = 1, then yi is censored and so its like-
lihood is:

where Φ is the standard Gaussian cumulative density func-
tion.

Because all observations are assumed to be independent, 
their joint likelihood is:

which is a function of β and σ. The intuition behind this like-
lihood form is that our model will essentially treat diff erently 
observations depending on whether these are eff ected by the 
censoring phenomenon (i.e. we know the true demand could 
have potentially been higher) or not (i.e. we know we can trust 
the observations as representing the desired true demand). 
Notice how the defi nition of this likelihood represents an 
attempt to encode supply-awareness into the implementation 
of demand prediction models.

2.3 Gaussian Processes

Gaussian Processes (GPs) [2] are an extremely powerful and 
fl exible tool belonging to the fi eld of probabilistic machine lea-
rning [1]. GPs have been applied successfully to both clas-
sifi cation and regression tasks. Given a fi nite set of points for 
regression, there are typically infi nitely many functions which 
fi t the data, and GPs off er an elegant approach to this pro-
blem by assigning a probability to every possible function. 
Moreover, GPs implicitly adopt a full probabilistic approach, 
thus enabling the structured quantifi cation of the confi dence 
– or equivalently, the uncertainty – in the predictions of a 
GP model. This ease in uncertainty quantifi cation is one of 
the principal reasons why we chose to use GPs for demand 
prediction in the shared mobility domain. Indeed, transport 
service providers are not only interested in more accurate 
demand models, but also, and maybe most importantly, wish 
to make operational decisions based on the measure with 
which the model is confi dent of its predictions. In practice, 
GPs express their uncertainty in predictions by updating their 
prior distribution (i.e. before observing the data) into a poste-
rior distribution (i.e. distribution after having observed the 
data). As an example, Figures 1, 2 show the prior and the 
posterior on a simple regression task.

In what follows, we will combine the concepts of Censored 
Likelihood and Gaussian Processes to defi ne Censored 
Gaussian Processes in an attempt to encode supply-aware-
ness within the modeling fl exibility of GPs.

Figure 1: Samples from GP prior distribution
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3 Bike-Sharing Demand Prediction

In this Section, we deal with the problem of building a demand 
prediction model for a bike-sharing system. Donkey Repub-
lic can be considered a hub-based service, meaning that the 
user of the service is not free to pick up or drop off  a bike in 
any location, but is restricted to a certain number of virtual 
hubs around Copenhagen. Our objective is to model daily 
rental demand in the hub network. The given data consists of 
individual records of users renting and returning bikes in hubs 
during 379 days: from 1 March 2018 until 14 March 2019. 
Hence before modeling daily rentals, we aggregate the data 
both spatially and temporally. Spatially, 32 hubs were aggre-
gated in three super-hubs by selecting three main service 
areas (such as the central station and main tourist attractions) 
and considering a 200 m radius around these points of inte-
rest (Figure 3). Temporally, the data at our disposal allowed 
us to retrieve the time-series of daily rental pickups regarding 
the three super-hubs, which will represent the target of our 
prediction model.

Ideally and before modeling, we would like to have access 
to the true bike-sharing demand, free of any real-world cen-
sorship. However, this ideal setting is impossible, as historical 
data records are necessarily censored intrinsically to some 
extent. Consequently and for the sake of experimentation, we 
assume that the given historical data represents true demand 
(which is what ideally we would like to predict). This further 

Figure 2: Samples (and corresponding confi dence interval) from GP 
posterior distribution.

Figure 3: Map with: 1) marked locations of Donkey Republic hubs, 
2) the three super-hubs in our experiments, as big circles around 
constituent hubs.

allows us to censor the data manually and examine the eff ects 
of such censorship.

We apply manual censorship to the time series of each super-
hub in two stages. In the fi rst stage, for each day i in N = 
{1...379}, we let δi � {0,1} indicate whether at any moment 
during i there were no bikes available in the entire super-hub, 
and defi ne accordingly the set of censored and non-censored 
observations:

We then fi x binary censorship labels as follows: li = 1 for 
and. . The reason for doing 

so is that for every day in Nc, there was a moment with zero 
bike availability, and so there may have been additional 
demand, which the service could not satisfy and which was 
thus not recorded.

Having fi xed the censorship labels, the second stage of cen-
sorship can be executed multiple times for diff erent censors-
hip intensities.

That is, given a censorship intensity 0 ≤ c ≤ 1, we censor each 
observation for which li = 1 to (1 − c) of its original value.

3.1 Results

As introduced in previous sections, the focus of our experi-
ments  is the comparison between Censored and Non-Cen-
sored models in the estimation of true demand patterns. We 
thus compare three GP models:

(i) Non-Censored Gaussian Process (NCGP): represents the 
Gaussian Process model most commonly used in literature, 
i.e., with Gaussian observation likelihood. NCGP is trained 
on the entire dataset, consisting of both censored and non-
censored observations, without discerning between them.

(ii) Non-Censored Gaussian Process, Aware of censorship 
(NCGP-A): functionally equivalent to NCGP, but uses informa-
tion on censoring as a pre-processing step. That is, NCGP-A 
is trained only on non-censored points, thus avoiding expo-
sure to a biased version of the true demand (because of cen-
soring). This, however, comes at the cost of ignoring relevant 
information embedded in the censored data

(iii) Censored Gaussian Process (CGP): this model considers 
all observations – censored and non-censored – through the 
likelihood function defi ned in (Section 2.2).

This section presents results for the predictive models imple-
mented on each of the three time-series with cross-validation. 
We now concentrate on the results for super-hub 1, as pre-
sented in Figures 4, 5 because they are representative also 
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of the results for the other two super-hubs. The plots are a 
visual representation of Table 1 (below) and compare the per-
formances of NCGP, NCGP-A and CGP for diff erent censors-
hip intensities. We discern between evaluating model perfor-
mance on the entire dataset (consisting of both censored and 
non-censored observations) vs. only on non-censored obser-
vations.

First, we compare the models that do not discard of any obser-
vations, namely, CGP and NCGP. Considering that a predic-
tive model is better the more its RMSE is to close 0 and the 
more its R2 is close to 1, the plots show that the two models 
are comparable under low degree of censoring. However, as 
the censorship intensifi es, NCGP becomes strongly biased 
towards the censored observations, whereas CGP recovers 
the underlying demand much more consistently.

Next, we compare between NCGP-A and the CGP and see 
that NCGP-A achieves reasonable predictive accuracy, which 
is still mostly worse than the predictive accuracy of CGP. As 
it can be expected, NCGP-A accuracy depends highly on the 
extent to which observable data characterizes the full beha-
vior of the latent function (in this case, true demand). Here, 
the percentage of points aff ected by censoring falls between 
20% and 40% for all the three super-hubs, so that NCGP-A 
has acceptable observability over the true demand. Even so, 
CGP outperforms NCGP-A also on just non-censored data; 
this suggests that using a censored likelihood not only allows 
models to avoid predictive bias on censored data, but also 
allows consistent understanding of the data generating pro-
cess, ultimately leading to increased performance also on 
observable data.

Figure 4: R2 performance over varying censoring intensities

Figure 5: RMSE performance over varying censoring intensities

In conclusion, the non-parametric nature of Censored GP 
allows it to eff ectively exploit the concept of censoring, thus 
preventing censored observations from biasing the entire 
demand model. In other words, Censored GP is capable of 
activating censoring-awareness depending on data only.

4 Conclusions

Building a model for demand prediction naturally relies on 
extrapolating knowledge from historical data. This is usually 
done by implementing diff erent types of regression models, 
to both explain past demand behavior and compute reliable 
predictions for the future – a fundamental building block for a 
great number decision making processes. However, we have 
shown how a reliable predictive model must take into conside-
ration censoring, especially in those cases in which demand 
is implicitly limited by supply. More importantly, we stressed 
the fact that, in the context of shared transport demand mode-
ling, there is a need for models which can deal with censoring 
in a meaningful way, rather than resorting to diff erent data 
cleaning techniques.

To deal with the censoring problem, we have constructed 
models that incorporate a censored likelihood function within 
a fl exible, non-parametric Gaussian Process (GP). We com-
pare this model to commonly used GP models, which incor-
porate a standard Gaussian likelihood, through a series of 
experiments on real-world datasets. These experiments high-
light how standard regression models are prone to return a 
biased model of demand under data censorship, whereas the 
proposed Censored GP model yields consistent predictions 
even under severe censorship. The experimental results thus 
confi rm the importance of censoring in demand modeling, 
especially in the transport scenario where demand and supply 
are naturally interdependent. More generally, our results sup-
port the idea of building more knowledgeable models instead 
of using case-dependent data cleaning techniques. This can 
be done by feeding the demand models insights on how the 
demand patterns actually behave, so that the models can 
adjust automatically to the available data.
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AOO 2021 Announcement

Save the date for AOO2021: May 3rd 2021

The Danish Operations Research Society (DORS) is pleased to announce the next Applications of Optimization conference 
(AOO2021), our annual workshop on applied optimization. It will take place on May 3rd at Industriens Hus in Copenhagen.

We are aware that the event may be subject to change depending on the further development of the Corona pandemic, and 
we will keep you updated through our online channels once we get closer to the date.

The workshop program is composed of four talks from OR experts and practitioners, and plenty of time for networking. We 
were able to secure the same panel of speakers that was scheduled for cancelled AOO2020, as follows:

• Anita Schöbel, Head of Fraunhofer Institute for Industrial Mathematics

• Henrik Caroe Bylling, Data Scientist at IKEA

• Marco Lübbecke, Professor of Operations Research at University of Aachen

• Niels-Christian Fink Bagger, Post-Doc at DTU Management

There are 5 free tickets available for DORS student members. If you are a DORS student member and interested in joining 
AOO 2020,  please send us a motivated application (a few sentences) before April 15th in order to apply for one of the fi ve 
free tickets.

We hope to see you all on May 3rd 2021!

The DORS board


